
Immersive 360◦ Style Transfer

Cheong Zhi Xi Desmond
Brown University

Providence, RI 02912
desmond cheong@brown.edu

Miku Suga
Brown University

Providence, RI 02912
miku suga@brown.edu

Jian Cong Loh
Brown University

Providence, RI 02912
jian cong loh@brown.edu

Abstract

In this project, we first used image representations de-
rived from Convolutional Neural Networks to combine the
semantic content of an image with the style of another im-
age, based on the technique developed by Gatys et al. Next,
we scaled the style transfer technique up from 512 x 512
pixels in the original paper and applied it to 6000 x 3000
pixels to create immersive 360◦ panorama images. Due to
GPU memory limitations, the maximum image size that we
were able to run the algorithm on was 1500 x 750 pixels.
We thereby ran style transfer on smaller, divided portions
of the content image before performing post-processing to
combine them seamlessly into a full-sized image.

1. Introduction
In A Neural Algorithm of Artistic Style, Gatys et al. intro-

duced a method for image style transfer that uses the feature
representations learned by Convolutional Neural Networks
to extract the content and style information from two im-
ages to combine them into a single image [1]. They worked
with the 19-layer VGG network pre-trained on Imagenet,
and identified ’conv4 2’ as the layer that captures the high-
level content of an image, and layers ’conv1 1’, ’conv2 1’,
’conv3 1’, ’conv4 1’ and ’conv5 1’ as the ones having good
style representations.

At a high-level, the algorithm performs gradient descent
to minimise the loss between the feature representations of
a noise image with the content representation of the original
content image in the content layer, and the style representa-
tion of the original style image in the style layers.

2. Methodology
2.1. Style Transfer

We first implemented neural style transfer on small 128 x
128 pixels images using the method described above (Fig-
ure 1). Once it was successful, we attempted to scale the
image up to the maximum size permitted by the GPU. On

Figure 1. Top: Original content image, Bottom left: Original style
image, Bottom right: Result of style transfer

a NVIDIA Tesla K80 GPU, we were able to perform style
transfer on images of up to 1500 x 750 pixels before reach-
ing the memory limit of the machine. In order to generate
images of 6000 x 3000 pixels, which is the size needed for
images to look natural when visualised as 360◦ panorama
images and to preserve high frequency visual information,
we decided to divide the original content image into smaller
images of size 1500 x 750 pixels each, run style transfer on
them individually, then combining them into the full-sized
image.

According to Gatys et al., initialising the image synthe-
sis process with the content image or the style image instead
of noise would ”bias the final image somewhat towards the
spatial structure of the initialisation” and ”deterministically
leads to the same outcome”. Given that a key challenge
we anticipated was in ensuring that the semantic content of
each smaller image aligns well with its neighbouring im-
ages’ such that the seams are less obvious, we initialised

1



Figure 2. Top: Image produced from four 1500 x 750 pixels im-
ages, with style image resized to 1500 x 750 pixels Bottom: Image
produced from four 300 x 150 pixel images, with style image re-
sized to 600 x 300 pixels and divided into four. In the bottom
image, we see that the clouds have a deeper yellow hue, which we
hypothesise is a result of the style image having a moon in the top
right quadrant. Because of the localisation of style features due
to the spatial layout of the style image, the colours in the second
image were less balanced across the smaller images.

the synthesis process using the content image to preserve
more of the content information.

2.2. Generating Larger Images

When running style transfer on the smaller (1500 x 750
pixels) images, we had to choose between scaling the style
image to the size of each small image, or resizing it to final
output size (3000 x 1500 pixels for an image composed of
4 smaller images) then splitting it into smaller parts. The
latter has the advantage of allowing us keep the relative
scale of the content and style images invariant to the output
resolution. However, splitting the style image into smaller
images resulted in the localisation of style features within
specific parts of the image, and this localisation is arbitrary
depending on the distribution of features within the style
image (Figure 2).

To reduce the seams between the smaller images and
make the large image more coherent, we considered mod-
ifying the style transfer algorithm to minimise the content
and style loss between neighbouring small images. One
such modification that we made was in resizing the 1500
x 750 pixels image generated through style transfer to 3000
x 1500 pixels, then dividing it into smaller images to be
used in the initialisation of the synthesis of smaller images.
While this produced some stabilisation in style, it did not
give significant improvements in overall coherence of the

Figure 3. Top: 1500 x 750 pixels image produced from style trans-
fer, which was resized to 3000 x 1500 pixels and divided into four,
Bottom: 3000 x 1500 pixels image produced from using the top
image in initialising style transfer on four 1500 x 750 pixels im-
ages.

large image (Figure 3). Given that modifying the neural
style transfer algorithm takes a long time to experiment and
tweak and does not necessarily give significant gains, we
decided that post-processing would give better results.

2.3. Post-processing

By dividing a large image into smaller patches then per-
forming style transfer on each individual patch, we are
able to scale the style transfer technique indefinitely even
with limited memory constraints. However, because each
patch underwent style transfer separately, after stitching the
patches back into one larger image, the final output does not
look coherent. Figure 4 shows an example of this issue. To
improve the coherence of the combined image, we carry out
a series of image processing procedures.

2.3.1 Feather Blending

In this project, feathering blending refers to a method of
blending pixel values from another image onto a target im-
age starting from the edges of the target image. The effect
of the blending is applied more heavily along the edges, and
quickly tapers off as the distance from the edge increases.

Let us call the width of pixels altered by the feather blend
the ‘blend width’ w, and the magnitude of blending for a
pixel that is x pixels away from the blending edge the ‘blend
factor’ Bx. We define Bx such that it decays rapidly the
further it is from the seam edge:

Bx = −1

2
log

x

w

2



Figure 4. The unprocessed output from stitching together 4x4 im-
ages of size 1500x750 pixels each. Although the content elements
are present, and each individual patch has been stylized, they ob-
viously look like 16 different images being put together.

Figure 5. The effects of feather blending on the unprocessed output
from Figure 4. The blend width used in this example was 200
pixels.

Using this formula, let the original pixel’s value be I0,
and the value of the pixel we’re blending it with be I1, the
final blended pixel will have a value I ′0 of:

I ′0 =
I0 +BxI1
1 +Bx

Feather blending is applied to the edges of each im-
age patch by sampling pixel values from the corresponding
points on a smaller stylised image. Figure 5 shows that this
method is effective at softening the appearance of seams.

Applying more blending passes for larger blend widths
could greatly improve the overall coherence of the image.

However, although this technique is effective at minimis-
ing the appearance of seams along the edges of stitches, it is
best to avoid applying it too heavily or to use a blend width
that is too wide. This is because we sample our blending
values from a lower-resolution base image, so blended pix-
els contain a mix of high-frequency and low-frequency in-
formation. Increasing the amount of blending decreases the
amount of high-frequency information, which is counter-
productive for scaling up the resolution of style transfer im-
ages.

Figure 6. The effects of normalising each 1500x750 pixel patch
on the unprocessed output from Figure 4 with a lower-resolution
stylised image.

2.3.2 Normalisation

From a visual inspection of the unprocessed image, we see
that there are sudden and large-scale changes in the colour-
ing from patch to patch. This contributes significantly to the
incoherence of the overall image.

To even out the larger-scale colour values between each
patch, we adapt our previous strategy with feather blending:
sample colour values from the corresponding points on a
smaller stylised image, then use these values to normalise
the colour values in our large image.

To illustrate, suppose we normalise the colours of an
entire 1500x750 pixel patch P0. Let the corresponding
1500x750 pixel patch from the smaller stylised image be
P1. We compute the new 1500x750 pixel patch P ′0 as fol-
lows (where µ represents a mean function and σ represents
a standard deviation function):

P ′0 =
P0 − µ(P0)

σ(P0)
× σ(P1) + µ(P1)

Apply this process to every 1500x750 pixel patch from Fig-
ure 4 gives us the output in 6. While the large-scale colours
have become more even, there are abnormally bright spots
in the image. These spots are areas where pixel values were
stretched across a range of values that is too large, and can
be mitigated by further renormalising them to span a smaller
range. This can be achieved by using the same renormal-
ising method, but with smaller and more localised image
patches. However, using image patches that are too small
could cause the same issue of losing high-frequency infor-
mation as with blending. The complete process that we use
for our results is described in the following section. We
found that this process strikes a balance between improving
overall image coherence, and preserving the images’ high-
frequency information.

3



2.3.3 Overall Post-processing Pipeline

Take a smaller stylized image as a base image and scale
it to the same size as the large image. Then perform the
following steps:

1. Normalize each patch in the large image with the val-
ues of the corresponding patch in the base image.

2. Normalize every horizontal and vertical band in each
patch in the large image with the values of the correspond-
ing band in the base image.

3. Feather blend the edges of each patch of the large
image with the pixel values in the base image.

3. Results

The full results of our style transfer on 7 images of
6000 x 3000 pixels, composed of 4 by 4, 1500 x 750 pix-
els images can be found in Appendix Figure 7. For each
image, the center of the image is zoomed in on a 360◦

panorama visualiser, showing the corners of 4 individual
patches stitched together post-processed. We can closely
observe the effects of post-processing on each image.

We have also created a demonstration at https://miku-
suga.github.io/cs1430-final-project/visualizer.html to visu-
alise the images as 360◦ panoramas.

3.1. Scale of stylised features

There is a large variation in the size of content elements
in our images. Image H shows an example with small base-
ball players in the center, but human faces on the edges that
are many times larger. Because of this, ‘semantic’ objects
are stylised with varying success. In this example, the base-
ball players are well-stylised, but the large facial elements
seem to be simply coloured as if they were a large back-
ground. This area requires further exploration, possibly by
adapting the use of the pretrained VGG network.

3.2. Post-processed image variations

There are slight differences in the quality of our final out-
puts. For most images the post-process worked well and the
seams of the sewn patches are mostly unnoticeable, for ex-
ample, image D. However, for example, in image B, if one
were aware that the image had been initially divided up into
patches, it is not difficult to locate the seams. We believe
this is due to pixel intensity variations along the edges of the
seam - the lower the variation, more pixels identified as low
frequency, allowing normalisation in those low-frequency
information, generating better post-process results.

To address the issues with some obvious seams, we tried
a few methods. One attempt was to renormalise pixels
around an edge with colour values on the other side of the
edge from the neighbouring patch. This would be combined
with a smoothing method similar to feather blending. How-

ever this attempt caused a mirror-like swap in colours along
the edge, arguably making the seams more obvious.

Additionally, we tried to apply the normalisation method
to even smaller divisions of the large image (for example,
splitting the large image into 120x120 rectangles, then nor-
malising each rectangle using a base stylised image). How-
ever this gave the image a grid-like appearance because ev-
ery normalised block resulted in new seams along its edges.
From these attempts, we believe there is still a lot of room
for further experimentation and improvement of the tech-
niques explored in this project.

4. Conclusion
In this project we scaled the style transfer technique for

much larger images in order to generate immersive panora-
mas. To deal with memory limitations, we felt that simply
switching to GPUs with larger capacities would not ade-
quately address this problem, but merely push the problem
further down the road until the increased memory limit is
hit once again. As such, we explored a method that would
allow one to apply style transfer to indefinitely large images
even with a memory constraint. The results can be improved
on, but we believe that this combination of deep learning
methods and traditional image processing has potential for
making style transfer more computationally viable.

4.1. Future Directions

That being said, taking advantage of more powerful
GPUs can also open up more possibilities. Since we hit the
memory limit on the NVIDIA Tesla K90 GPU for relatively
small images, we could look at using other recommended
GPUs. E.g. NVIDIA Tesla P100, NVIDIA Tesla T4.

4.1.1 Real time Video Immersive 360◦ Style Transfer

Another extension would be to perform style transfer re-
peatedly in a loop on still images from successive frames
taken from a live video. It has been 5 years since the orig-
inal paper on style transfer by Gatys et. al. where they
discussed the performance barriers for online and interac-
tive style transfer applications. There have been improve-
ments in technology since then, but there are still challenges
for such applications. For real-time video style transfer,
we foresee a challenge in minimising latency and utilising
GPUs that maximise frame rate of the output video to per-
form smooth style transfer on live videos.

Possibly, a solution would involve not just improvements
in deep learning and GPU technology, but also a mix of
other techniques in computer vision.

References
[1] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A

neural algorithm of artistic style, 2015.

4

https://miku-suga.github.io/cs1430-final-project/visualizer.html
https://miku-suga.github.io/cs1430-final-project/visualizer.html


A. Contributions
Cheong Zhi Xi Desmond worked on setting up the eval-

uator class to calculate the losses in each iteration, the opti-
mization function, and did general housekeeping and refac-
toring of the code. Executed post-processing on the images,
including both feather blending and normalisation. Set up
the html 360◦ visualiser.

Miku Suga worked on defining the content loss, style
loss and total variation loss functions and combining them
together into a tensor. Then experimented with preserving
high frequency visual information while controlling the im-
ages to look natural, helping with tuning hyperparameters.
Performed style transfer on own images in H.

Jian Cong Loh worked on collecting the images needed
and setting up the program, including image preprocessing
and setting up the VGG model. He then proceeded to ex-
periment on preserving high frequency visual information
while controlling the images to look natural, investigating
on resizing and dividing the images into patches. Came up
with various post-processing ideas to work on and debugged
many of our errors.

B. Final Outputs
Outputs begin on the following page.

5



A.

B.

6



C.

D.

7



E.

F.

8



G.

H.

Figure 7. 360◦ panorama images A-G from: Pixexid “360 Panorama Images” pixexid.com/search/360%20panorama. Panorama image
H taken using an iPhone at one of Brown’s football game. Style art: A. ”Brick Factory at Tortosa” by Pablo Picasso, oil on canvas,
1909 B. ”The Starry Night” by Vincent van Gogh, oil on canvas, 1889 C. ”The Great Wave off Kanagawa” by Katsushika Hokusai, color
woodblock, 1829-1833 D. ”The Water Lilies – Setting Sun” by Claude Monet, oil painting, 1914-26 E. ”Plage a Heist (The Beach at
Heist)” by Georges Lemmen, oil on panelmedium, 1891–92 F. ”A Sunday Afternoon on the Island of La Grande Jatte” by Georges Seurat,
oil paint, 1884–1886 G. ”Bedroom in Arles,” by Vincent van Gogh, oil paint, 1888 H. ”Taue wo matsu suidenn” by T. Sudoh, oil on canvas,
2002

9


