
TRustDB — A Time Series Database for High-Cardinality,
Multivariate Data

Desmond Cheong
Brown University

desmond cheong@brown.edu

Nick Young
Brown University

nicholas young@brown.edu

ABSTRACT
The adoption of microservices-based distributed systems has
led to an increase in the collection and usage of telemetry
data such as metrics. This data helps operators understand
the state of complex systems, and is often stored in time
series databases that support fast ingestion and querying of
high-volume and high-sample-rate data. However, data pro-
duced by monitoring workloads for microservices addition-
ally tend to have high-cardinality. For example, this hap-
pens when rolling updates of microservices are performed,
causing a phenomenon known as series churn, where a set
of time series become inactive and are replaced by a new
set of time series. Or, when endpoint IP addresses change
frequently, a different time series is created for each new
address.

High-cardinality data poses its own set of challenges in terms
of management and usage. In this paper, we address two of
these: minimizing the overheads of storing high-cardinality
metadata, and efficiently querying large numbers of time se-
ries for specific data points. We present TRustDB, a time
series database that tackles these issues by (1) compress-
ing metadata with finite-state transducers (FSTs), and (2)
optimizing queries by rewriting and evaluating them in dis-
junctive normal form (DNF).

Our code is available on GitHub at:
https://github.com/n-young/trustdb

1. INTRODUCTION
Time series databases are widely used in storing telemetry
data such as metrics and are a key component of monitoring
systems. Work on time series databases typically revolves
around achieving high ingest rates, low storage footprints,
and fast query times. A primary issue that many time series
workloads face is high-cardinality data — that is, data with
a wide variety of values and tags, resulting in quick growth
in the number of series being tracked, a phenomenon known
as churn. Churn can lead to a growth in the size of meta-

data and an increase in query processing time; thus, solving
the high-cardinality problem is key to meeting the primary
objectives of a time series database.

A primary consequence of high-cardinality data is an in-
crease in the number of time series relative to the number
of data points being ingested. For each new time series, the
system must track more metadata related to the time series,
including series labels, metric names, timestamp ranges, et
cetera. Higher cardinality leads to a lower ratio between
metadata and the data itself; thus, as metadata grows to a
non-negligible proportion of necessary data, so does the need
to optimize how we process and store metadata. Moreover,
as the number of time series increases, queries for time series
data become much less straightforward to evaluate, as data
is likely to be split across different series. More emphasis is
placed on deciding which series to evaluate, rather than on
the values of the data points themselves.

In the following sections, we explain our data model and sys-
tem architecture, then our two primary contributions: com-
pressing metadata storage by applying finite-state transduc-
ers (FSTs) and optimizing queries by converting to disjunc-
tive normal form (DNF).

2. TRUSTDB
2.1 Data Model
We introduce TRustDB, a time series database for high-
cardinality, multivariate data. TRustDB supports reads and
writes of multivariate time series data in JSON format.

Data points consists of a name, a set of label-value pairs, a
set of metric-value pairs, and a timestamp. Data can arrive
out of order between series, but not within a given series.
An example data point is shown below (shortened):

"name": "cpu",

"labels": {

"hostname": "host_0",

"region": "us-west-1"

},

"variables": {

"usage_user": 58.0,

"usage_system": 2.0

},

"timestamp": "2016-01-01 00:00:00+00:00"

Queries consist of equality or comparison statements, called

1



conditions, over label-key and label-value pairs, metric-name
and metric-value pairs, or timestamps. Conditions are com-
bined using ‘And’ or ‘Or‘ nodes in a binary tree-like struc-
ture. An example query is shown below (shortened):

"condition": {

"And": [

{

"Leaf": {

"lhs": { "LabelKey": "Key" },

"rhs": { "LabelValue": "Value" },

"op": "Eq"

}

},

{

"Leaf": {

"lhs": { "Variable": "Var" },

"rhs": { "Metric": 6.0 },

"op": "Gt"

}

}

]

}

2.2 System Architecture
TRustDB follows a rather conventional in-memory model
with a simple scheme for flushing data to disk. Data is stored
in Series, which consist of a set of label key-value pairs, a
vector of metric names, and a vector of SeriesRecords, each
containing just a vector of metric values and a timestamp.
Series are stored in Blocks, of which at most one is main-
tained in memory at any given point in time. A Block con-
sists of a vector of Series, start and end timestamps des-
ignating the range of the Block, a HashMap denoting the
location of a Series in storage by its id, and an inverted in-
dex over the label key-value pairs and metric names. The
inverted index is initially maintained as a HashMap but is
later compressed to an FST, and each entry in the index
points to a Bitmap indicating which Series are relevant.

When the current Block is considered full, it is frozen and
flushed to disk while another Block is allocated to continue
ingesting data. Additionally, a BTreeMap, used for perform-
ing range queries over data on disk, is maintained over all of
the Blocks in-memory and on-disk, indexed on block start-
and end-times. Blocks are stored in standalone files. To
avoid reading excessive memory from disk, when a Block’s
relevance is being considered for a query, it is maintained as
a PackedBlock, which contains all of the metadata relating
to the Block’s contents, but not the data itself.

All of the relevant structs are detailed in the appendix.

3. INVERTED INDEX COMPRESSION
Supporting data structures are needed to provide fast queries
over time series. One common choice is an inverted index
that maps from label key-value pairs and metric names to
a set of relevant time series. However, high-cardinality data
has two characteristics that make it challenging to apply
the same techniques: (1) each series tends to have a greater
amount of associated metadata which helps identify differ-
ent series; (2) series tend to have fewer data points, meaning

that a significant proportion of space is used by metadata.

These issues lead to the conclusion that special attention
should be paid to metadata compression. Prior work done
by ByteSeries [1] suggests that tries are a good option to
compress inverted indices, because series often have over-
lapping label keys, and various label values (such as IP
addresses) also have overlapping patterns. In comparison,
M3DB1 uses FSTs to store index information. We believe
that FSTs should produce greater savings compared to tries:
branches in a trie that have overlapping strings can be merged
into the same path on a Directed Acyclic Graph, as in an
FST.

As such, in TRustDB, when flushing an in-memory block to
disk, we take the inverted index that was previously main-
tained as a hash map and store it as an FST.

4. QUERY OPTIMIZATION
TRustDB supports conditions over labels and over metrics;
the former acts as a filter over entire series, while the latter
acts as a filter over individual data points across series. Crit-
ically, we can apply label conditions using only series meta-
data, without needing to look at any data points. Moreover,
notice that once we apply a metric condition and receive a
vector of data points across series, we lose the ability to eas-
ily filter by label conditions. Thus, it is much more favorable
to cull the search space using metadata before looking at
the data itself. This leads to our first implication: that we
should evaluate label conditions early, and metric conditions
late.

To do so, we delay evaluation of metric conditions, a pro-
cess we call unpacking, by saving the metric condition as a
lambda function to be evaluated over all relevant time series
when it is necessary. So now, the question becomes: when
is it necessary to unpack? This is best illustrated through
an example; consider the following condition:

x′ ∨ (y′ ∧ y) (1)

where x′, y′ are metric conditions and y is a label condition.
We evaluate bottom-up, first evaluating y′ ∧ y — to do so,
we save y′ as a lambda function and apply y immediately.
This returns us a set of relevant series and a filter to apply
later. Next, we apply x′ ∨ (y′ ∧ y). We may be tempted
to save x′ as a lambda function, but x′ is not bounded to
apply to only series that fit y. Thus, there is no way to
combine these two conditions into one result set under our
scheme; it is in this case, encountering an ‘Or’ clause, that
we are forced to unpack. So, to evaluate, we unpack the
right subtree, unpack the left subtree, and then intersect
our results. This leads to our second implication: that we
should process ‘And’ clauses before ‘Or’ clauses.

However, because we evaluate clauses bottom-up, this is not
always possible; thus, some query optimization is warranted
to ensure that we always process ‘And’s before ‘Or’s. To
achieve this, we convert our queries to disjunctive normal
form (DNF), a structured form of boolean expression which
consists of one large ‘Or’ clause over many ‘And’ clauses. To
convert a query to DNF, we repeatedly distribute our con-

1https://m3db.io/

2



junctions over our disjunctions, pushing our ‘And’ clauses
further down the tree. It’s worth nothing that while this
transformation does lead to potentially exponential growth
in the size of the query, experiments show that it is a worth-
while trade-off in the face of unpacking. Moreover, other
potential transformations, such as by applying De Morgan’s
Laws, may necessitate the use of ‘Not’ clauses, creating po-
tentially massive sub-evaluations.

These implications lead to the following query processing
scheme. First, convert our query to DNF. Queries are then
evaluated bottom-up according to the tree structure defined
by the data model, passing ResultSets up along the tree.
On each level of evaluation, a ResultSet is either packed
or unpacked; in its packed form, the ResultSet contains no
Records - only a set of relevant Series and a set a lambda
functions that filter out the relevant data points in each
Series. In its unpacked form, the ResultSet contains the
raw vector of Records. At the root of the condition, or
when necessary, the ResultSet is unpacked and returned to
the caller.

5. EXPERIMENTATION AND EVALUATION
To evaluate our optimizations, we used a slightly modified
version of TSBS to generate a high-cardinality workload,
with a log interval of 1s spanning an hour of data from mul-
tiple sources. The workload we evaluate on has 32,400 rows.

5.1 Evaluating Storage Optimizations
Passing the above workload as input into TRustDB, we track
the amount of storage space needed to store our inverted
index on disk in two different forms — (a) directly as a hash
map, and (b) converted into an FST.

Pts/Blk Churn
Rate

Hash
Map

FST Size Reduction

10,000 0.001 1.35MB 1.33MB 1.4%
10,000 0.01 1.47MB 1.44MB 1.7%
10,000 0.1 2.10MB 1.81MB 13.8%
30,000 0.001 1.16MB 1.14MB 1.4%
30,000 0.01 1.27MB 1.22MB 3.8%
30,000 0.1 1.88MB 1.59MB 15.3%

Figure 1: Here, Pts/Blk refers to the number of
data points whose meta we store together, Churn
Rate refers to the probability that a time series
stops emitting values. The sizes under “Hash Map”
and “FST” refer to the storage space needed for the
metadata with each storage method, and size re-
duction refers to the percentage space savings when
going from hash maps to FSTs.

From Figure 1, we notice that as the data points stored
per block increases, the space savings from switching from a
hash map to an FST increases. A similar pattern occurs as
churn rate increases. These trends make sense because the
number of series metadata stored in the FST is proportional
to the data points per block, and how often new series are
created.

As an additional experiment, we generated another work-
load with 300,000 rows to investigate the savings with more

data points per block. The results in Figure 2 show us the
same trend from Figure 1. Comparing the results, we see
that there is a sub-linear increase in the percentage of space
saved as compared to the increase in the number of series’
meta data being stored in the FST.

Although the space savings from using FSTs are promising
(achieving up to an 18% savings on storage space in our
largest workload of 300,000 input rows), before determining
whether they are the right data structure to use, further
experiments need to be carried out to evaluate the compu-
tational costs of converting the inverted index into an FST,
and to understand how the use of an FST might impact
the speed of query evaluation. We plan to take up these
experiments in future work.

Pts/Blk Churn
Rate

Hash
Map

FST Size Reduction

100,000 0.001 8.88MB 8.71MB 2.0%
100,000 0.01 10.0MB 9.52MB 4.9%
100,000 0.1 15.9MB 13.0MB 18.3%

Figure 2: Space savings when we further increase
the number of points per block.

5.2 Evaluating Query Optimizations
We test locally on a generated workload on three variants
of TRustDB — (a) one with DNF conversion and deferred
metric evaluation, (b) one with only deferred metric evalu-
ation, (c) and one with neither optimization.

For our first run, we used two separate query generators to
generate series-targeted queries in the same form as (1). We
test each run on 20 queries of this form. Time is measured
using the UNIX time command on a script that runs the
given workload.

run 1 a b c
ingest 1m18.622s 1m30.694s 1m14.290s
queries 0m40.056s 4m52.767s 5m0.669s

Figure 3: Above are the evaluation times for 20
queries in minimal form (1) on 32,400 data rows.

For our second run, we use the same workload alongside 10
queries generated in conjunctive normal form (CNF), which
is the opposite of DNF: a series of ‘And’s over units of ‘Or’s.
Concretely, we evaluate on queries of the form:

(a′ ∨ a) ∧ (b′ ∨ b) ∧ (c′ ∨ c) ∧ (d′ ∨ d) (2)

It’s worth noting that queries of this form are the worst case
scenario for converting to DNF, as the resulting query will
have 2n clauses. Our results are shown in Figure 4.

There is a clear increase in query evaluation speed when we
apply deferred metric evaluation and DNF conversion both
on the minimal case and on the worst case. This suggests
promise in our evaluation scheme, and we hope to do further
investigation and evaluation to see which workloads DNF
might perform better or worse on.

3



run 2 a b c
ingest 1m23.338s 1m37.556s 1m33.024s
queries 0m1.202s 5m8.373s 4m56.741s

Figure 4: Above are the evaluation times for 10
queries in CNF (2) on 32,400 data rows. We get
massive time speed up by converting to DNF (over
250x).

6. CONCLUSION
In this paper, we introduce TRustDB, a database which
is optimized for incredibly high-cardinality data reads and
writes. By introducing FSTs in the storage layer and us-
ing DNFs to optimize query evaluations, we produce sig-
nificant space and time improvements when handling high-
cardinality time series data, with our gains improving as
cardinality and query complexity increase. We have good
reason to suspect that similar optimizations could be ap-
plied to other time series databases to increase storage- and
query-layer efficiency.

7. REFERENCES
[1] X. Shi, Z. Feng, K. Li, Y. Zhou, H. Jin, Y. Jiang,

B. He, Z. Ling, and X. Li. Byteseries: an in-memory
time series database for large-scale monitoring systems.
In Proceedings of the 11th ACM Symposium on Cloud
Computing, pages 60–73, 2020.

APPENDIX
Structs
pub struct BlockIndex {

index: BTreeMap<i64, Vec<String>>,

}

pub struct Block {

index: HashMap<String, Bitmap>,

storage: Vec<Series>,

id_map: Vec<String>,

key_map: HashMap<String, usize>,

start_timestamp: Option<DateTime<Utc>>,

end_timestamp: Option<DateTime<Utc>>,

frozen: bool,

compressed_index: Option<Map<Vec<u8>>>,

compressed_bitmaps: Vec<Bitmap>,

}

pub struct PackedBlock {

start_timestamp: Option<DateTime<Utc>>,

end_timestamp: Option<DateTime<Utc>>,

index: HashMap<String, Bitmap>,

filepath: String,

}

pub struct Series {

id: usize,

name: String,

labels: HashMap<String, String>,

variables: Vec<String>,

records: RwLock<Vec<SeriesRecord>>,

}

pub struct SeriesRecord {

metrics: Vec<f64>,

timestamp: i64,

}

pub struct ResultSet {

unpacked: bool,

data: Vec<Record>,

series: Bitmap,

filters: Vec<(String, Box<dyn Fn(f64) -> bool>)>,

}

4


